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Humans can quickly and intuitively represent the
number of objects in a scene using visual evidence
through the Approximate Number System (ANS). But the
computations that support the encoding of visual
number—the transformation from the retinal input into
ANS representations—remain controversial. Two types
of number encoding theories have been proposed: those
arguing that number is encoded through a dedicated,
enumeration computation, and those arguing that visual
number is inferred from nonnumber specific visual
features, such as surface area, density, convex hull, etc.
Here, we attempt to adjudicate between these two
theories by testing participants on both a number and a
cumulative area task while also tracking their eye-
movements. We hypothesize that if approximate
number and surface area depend on distinct encoding
computations, saccadic signatures should be distinct for
the two tasks, even if the visual stimuli are identical.
Consistent with this hypothesis, we find that
discriminating number versus cumulative area
modulates both where participants look (i.e.,
participants spend more time looking at the more
numerous set in the number task and the larger set in
the cumulative area task), and how participants look
(i.e., cumulative area encoding shows fewer, longer
saccades, while number encoding shows many short
saccades and many switches between targets). We
further identify several saccadic signatures that are
associated with task difficulty and correct versus
incorrect trials for both dimensions. These results
suggest distinct encoding algorithms for number and
cumulative area extraction, and thereby distinct
representations of these dimensions.

Introduction

Our visual system can quickly, though approxi-
mately, represent the number of objects in a scene

through the Approximate Number System (ANS).
Visual representations of number obey Weber’s law
(Cantlon, Platt, & Brannon, 2009; Feigenson, Dehaene,
& Spelke, 2004; Halberda & Odic, 2014), are used by
human infants and children (Halberda & Feigenson,
2008; Izard, Sann, Spelke, & Streri, 2009; Libertus &
Brannon, 2009; Odic, Le Corre, & Halberda, 2015;
Odic, Pietroski, Hunter, Lidz, & Halberda, 2013) and
many nonhuman animals (Cantlon & Brannon, 2006;
Kilian, Yaman, von Fersen, & Güntürkün, 2003; Piffer,
Agrillo, & Hyde, 2011; Viswanathan & Nieder, 2013),
and have a well-established neural basis in the intra-
parietal sulcus (Cantlon et al., 2009; Piazza, Izard,
Pinel, Le Bihan, & Dehaene, 2004; Pinel, Piazza, Le
Bihan, & Dehaene, 2004). For example, the ANS
allows us to briefly look at the left side of Figure 1 and
decide that more of the objects are yellow.

A major open question, however, is how the visual
system transforms the retinal input into an appropriate
ANS representation—that is, how vision encodes
approximate number from the visual scene. In other
words, which visual features and computations allow
ANS representations to form?

The encoding of number has been a highly contro-
versial issue amongst vision scientists, with theories
falling into one of two camps: theories suggesting
dedicated, number-specific encoding mechanism(s) that
extract numeric information directly from the input
(Anobile, Cicchini, & Burr, in press; Burr & Ross, 2008;
Dehaene & Changeux, 1993; Franconeri, Bemis, &
Alvarez, 2009; Park, DeWind, Woldorff, & Brannon,
2015; Ross & Burr, 2010; Sengupta, Surampudi, &
Melcher, 2014; Stoianov & Zorzi, 2012), and theories
suggesting that number is extracted from one or more
nonnumber specific visual features, such as density,
surface area, brightness, convex hull (the cumulative
surface area covering all the objects), etc. (Cantrell &
Smith, 2013; Clearfield & Mix, 1999; Dakin, Tibber,
Greenwood, Kingdom, & Morgan, 2011; Durgin, 1995,
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2008; Gebuis & Reynvoet, 2012; Szucs, Nobes, Devine,
Gabriel, & Gebuis, 2013; Tibber, Greenwood, &
Dakin, 2012). Given that ANS representations must
emerge from the extraction of some visual feature, a
different way of casting the debate is whether number
information is or is not a primary visual feature.

In the dedicated encoding theories, the visual system
is hypothesized to directly encode number. For
example, under several popular models, the visual
system extracts and represents the position of each
relevant, segmented object (e.g., each blue dot) on a
topographic map (Dehaene & Changeux, 1993; Fran-
coneri et al., 2009; Stoianov & Zorzi, 2012). Following
a normalization step, the total pooled activity on the
topographic map will perfectly correlate with the
number of objects: The more objects on the retina, the
more positional activity on the topographic map, and
the greater the representation of number. Critically, to
guarantee that each object contributes the same activity
to the pooling computation (e.g., that one big object
isn’t counted as two small ones), the topographic map
must also remove or ignore all nonpositional informa-
tion from the objects, including their size, shape,
brightness, etc. Hence, whereas visual features such as
cumulative area and convex hull might correlate with
number, the encoding procedure actively suppresses or
ignores these nonpositional features. Computationally,
the abstraction of nonpositional features by the
topographic map can be accomplished either by a
prebuilt mechanism (Dehaene & Changeux, 1993), or
through learning (Sengupta et al., 2014; Stoianov &
Zorzi, 2012). Evidence for object topographic maps has
been found, for example, in the LIP area in monkeys
(Roitman, Brannon, & Platt, 2007; Stoianov & Zorzi,
2012).

Further evidence for the dedicated encoding theories
comes from adaptation studies, where prolonged
exposure to a particular stimulus changes the visual
system’s subsequent response to a novel stimulus (e.g.,

as in color afterimages). If the visual system has a
dedicated number encoding mechanism, then one
should be able to adapt number-specific neurons.
Durgin (1995) was the first to show that prolonged
exposure to a high-density display of objects affects
their perceived number: High-density adaptation
makes the subsequent display appear smaller in
number. Subsequent work by Burr and Ross (2008;
Ross & Burr, 2010, 2012; but also see Durgin, 2008)
showed that—even when density is controlled for—
exposure to a stimulus with a large number of objects
subsequently makes patches with an identical number
of objects appear significantly smaller (e.g., one might
misperceive 100 dots as 80). Together, the object
topographic map models and the adaptation studies
have both been used to support the idea that the visual
system encodes number via a dedicated mechanism.

The dedicated encoding models have been criticized,
however, and more recently a series of nonnumeric and
nonobject specific models have been proposed in their
place (Dakin et al., 2011; Gebuis & Reynvoet, 2012;
Morgan, Raphael, Tibber, & Dakin, 2014; Szucs et al.,
2013). In these models, the visual system is hypothe-
sized to be incapable of representing number directly,
and must instead infer the number of objects through
nonnumeric visual features such as cumulative area,
density, and brightness. These nonnumeric visual
features do not depend on object representations and
could not be used to make topographic maps, but
instead rely on global features such as texture and low
spatial-frequency information. As a result, these
theories predict that our perception of number will
critically depend on the properties of these low-level
nonnumeric features, and we should find that number
is highly influenced by the differences in, e.g.,
cumulative surface area. For example, under the model
of Dakin and colleagues (2011), number is encoded by
combining low spatial-frequency information about
density and normalizing it by the convex hull; hence,

Figure 1. Example of a Congruent and Incongruent trial, alongside the three Area of Interest (AOI) regions. Participants saw identical

trials for the Number (more blue or yellow blobs) and Area (more blue or yellow area) Tasks. On Congruent trials the answer by

number and cumulative area are the same, whereas on Incongruent trials they differ (the numerically greater side has less cumulative

area).
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the more dense the display and the smaller the objects,
the higher the perceived number (i.e., number repre-
sentations are encoded entirely by proxy through
density and area). Number adaptation results could
then be explained solely by adaptation of density and/
or area neurons, rather than by adaptation of number-
specific encoding neurons (Dakin et al., 2011; Durgin,
1995, 2008; but see also Ross & Burr, 2012).

Though perhaps not as initially intuitive, models of
visual number encoding through nonnumeric dimen-
sions have both theoretical and empirical support. For
example, given that number strongly correlates with
nonnumeric features such as size and area (e.g., the
more apples are in a bag, the larger the bag is), a
dedicated number encoding computation seems un-
necessary (Cantrell & Smith, 2013; Gebuis & Reynvoet,
2012). A dedicated system for encoding number also
seems neurally implausible. Dakin and colleagues
(2011), for example, suggest that number must either be
encoded by a yet unidentified item-by-item counting
computation, or can otherwise be efficiently estimated
through other features, such as combining density and
area information, a feat easily accomplished by the
primary visual cortex (Dakin et al., 2011; Durgin, 2008;
Tibber et al., 2012). Thus, from the perspective of both
usability and plausibility, inferring number from
dimensions such as area seems theoretically preferable
to a dedicated encoding computation.

Several empirical findings also support the view that
number is encoded through nonnumeric features.
Number discrimination can indeed be affected by
manipulating nonnumeric visual features, and espe-
cially object size, cumulative area, and convex hull.
Hurewitz and colleagues (2006), for example, gave
adult observers a number task in which the cumulative
area answer was either congruent with number (i.e., the
more numerous set of dots was also bigger in area), or
was incongruent with number (i.e., the more numerous
set of dots was smaller in area). Number discrimination
was significantly impacted by congruency, with better
performance on congruent trials. Similarly, Durgin
(1995) observed that number representations are
related to density: The denser the display, the higher
the estimated number. Other work utilizing congruent/
incongruent designs has shown that visual features such
as convex hull, object diameter, and object size all
affect number discrimination and estimation (Gebuis &
Reynvoet, 2012; Szucs et al., 2013).

But, despite all the work to date, evidence for the
dedicated versus the nonnumeric feature encoding
theories has been equivocal. For example, whereas the
number-specific adaptation findings have been criti-
cized for tapping into features like density (Dakin et al.,
2011; Durgin, 2008; Tibber et al., 2012), other work has
suggested that number adaptation occurs even when
density is controlled for (Anobile et al., in press; Ross &

Burr, 2010, 2012) or only when displays contain well
over twenty objects (Anobile, Cicchini, & Burr, 2014).
Additionally, altering nonnumeric visual features such
as density may also incidentally impact object maps, as
denser collections include objects that are more
crowded and harder to extract (Allı̈k & Tuulmets, 1991;
Anobile et al., 2014, in press; Ross & Burr, 2012).
Recent EEG evidence also suggests that the early visual
cortex is more sensitive to changes in number than
other visual features (Park et al., 2015). And, whereas
some findings report a difference between congruent
and incongruent trials (Gebuis & Reynvoet, 2012;
Gilmore et al., 2013; Szucs et al., 2013), many have
failed to find any differences, especially when the ratio
of the nonnumeric feature is matched to that of number
(Barth, 2008; Libertus, Odic, & Halberda, 2012; Odic,
Hock, & Halberda, 2014; Odic, Libertus, Feigenson, &
Halberda, 2013; Piazza et al., 2004). Finally, the
congruency effects may not be indicative of number
encoding, but instead may reflect the observer’s failure
to use the intended dimension (i.e., number) when other
dimensions are salient and/or easier for the trial at
hand (Gilmore et al., 2013).

In the experiment reported here, we test the
similarities and differences in number and cumulative
area encoding by monitoring eye-movements while
observers perform either a number discrimination task
(‘‘Are more of the blobs blue or yellow’’) or a
cumulative area discrimination task (‘‘Is more of the
blob blue or yellow’’). By monitoring eye-movements,
we can determine whether the information observers
seek in the display is identical or different when
discriminating number and when discriminating cu-
mulative surface area. For example, if participants infer
number through a nonnumeric dimension such as area,
eye-movement patterns during the number task should
be similar to the patterns observed during the area task.
Critically, we give observers identical displays for both
of these tasks, allowing us to directly compare their
saccadic movements when only the judged dimension
differs.

What saccadic signatures might we expect if the
number and cumulative area encoding computations
are distinct versus if they are similar? Because no
previous study has examined performance on number
and area discrimination tasks while concurrently
tracking eye-movements, our predictions of the rele-
vant signatures are entirely informed by the models
reviewed above.

In the case of area encoding, there is a high degree of
agreement between the two theories: Surface area is
most likely encoded by pooling texture and low spatial-
frequency information using global, distributed atten-
tion (Alvarez, 2011; Cant & Xu, 2012; Chong &
Treisman, 2003, 2005; Corbett & Melcher, 2013; Dakin
et al., 2011; Haberman & Whitney, 2012).1 Because the
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processing of low spatial-frequency information is
equally good in peripheral and foveal vision (Stras-
burger, Rentschler, & Jüttner, 2011), and because
saccades are rare with distributed attention (Kowler,
Anderson, Dosher, & Blaser, 1995; McPeek, Maljkovic,
& Nakayama, 1999; Rizzolatti, Riggio, & Sheliga,
1994; Weber, Schwarz, Kneifel, Treyer, & Buck, 2000),
area encoding should produce very few saccades, and
hence, very long gazes.

If number is encoded through surface area (either
directly, as predicted by Gebuis & Reynvoet, 2012, or
with area as a normalizing function for density, as
predicted by Dakin et al., 2011), then the encoding of
number should similarly depend on pooling texture and
low spatial-frequency information using distributed
attention. As a result, if number is inferred through
cumulative area encoding, eye-movements should be
similar for both tasks. First, participants should spend
more time looking to the side with higher cumulative
area (as that side should also be judged to have more
objects). Second, participants should show few sac-
cades and long gazes, indicative that they are encoding
number through distributed attention and the pooling
of low-level spatial frequency. In summary—if number
is inferred by using evidence from cumulative surface
area—eye movements should be near-identical on the
number and an area tasks.

The dedicated encoding theory, however, predicts a
different pattern of eye-movements for number com-
pared to cumulative surface area. Since dedicated
encoding models critically depend on identifying exact
object positions, number encoding will suffer in
conditions where objects positions cannot be easily
identified or where multiple objects are close enough
that they cannot be reliably bound into proto-objects
or segmented into object representations (He, Cava-
nagh, & Intriligator, 1996; Rensink, O’Regan, & Clark,
1997; Walther & Koch, 2006). Such proto-object or
object representations may be disrupted either when the
objects are densely packed together (Anobile et al.,
2014; Ross & Burr, 2012), or when they are in
peripheral vision, where visual crowding, eccentricity,
and distributed attention will interfere with individua-
tion (Anobile et al., 2014; He et al., 1996; Rosenholtz,
Huang, Raj, Balas, & Ilie, 2012; Ross & Burr, 2012). As
a result, number encoding theories that depend on
representing object positions (e.g., on a topographic
map) predict that participants will make many quick
saccades, including to peripheral areas of the visual
display, in an effort to separate crowded objects and
correctly represent their positions on the topographic
map. As a result, dedicated number encoding should
yield many saccades, and hence short gaze durations,
especially when compared to cumulative area encoding,
and should also result in greater looking to the array

that is greater in number—irrespective of any differ-
ences in total area.

Experiment

Methods

Participants

12 adult observers participated for course credit.
Three additional participants were removed because
the eye-tracker could not reliably track their eyes (i.e.,
we observed fewer than 10% good samples).

Materials

Participants were tested on a Tobii TX300 running
at 300 Hz. The eye-tracker was mounted on a 22 00

widescreen monitor. The stimuli were presented with
Tobii Studio 3.2 running on Windows 7.

Each participant was given both a Number Task and
an Area Task, in counterbalanced order. In order to
make sure that none of our eye-tracking results were
affected by difficulty or response time, we created
stimuli that (in pilot testing) showed identical average
discrimination performance and average RT for the
two tasks. The stimulus displays used in the two tasks
were identical, and consisted of many blue and yellow
blob shapes (see Figure 1); all of the blue blobs were
presented in an invisible box centered approximately
200 pixels to the right of fixation, and all of the yellow
blobs were presented in an invisible box centered
approximately 200 pixels to the left of fixation.

To modulate difficulty, we manipulated the ratio of
blue to yellow blobs, and the ratio of cumulative blue
to yellow area (i.e., number of pixels). Ratio was
defined as the larger quantity (number, pixels) divided
by the smaller quantity. For example, the stimulus on
the left side of Figure 1 has 20 yellow versus 10 blue
objects (a ratio of 2.0), and 1700 yellow pixels versus
850 blue pixels (a ratio of 2.0). In total, we used five
ratios: 2.0, 1.5, 1.2, 1.14, and 1.12, with each trial’s
number ratio matching the trial’s area ratio.

Half the trials were Congruent (number and
cumulative surface area agreed on the answer; e.g.,
Figure 1, left), and half were Incongruent (number and
cumulative surface area disagreed on the answer; e.g.,
Figure 1, right). Congruent trials also matched average
object size for the two sets.

Procedure

Participants were calibrated with an 8-dot calibra-
tion before the start of each task. Subsequently, each
participant did both the Number and the Area Task,
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with order counterbalanced across subjects. During the
Area Task, participants were asked: ‘‘Is more of the
blob blue or yellow,’’ and to press the ‘‘F’’ key for
‘‘More of the blob is yellow,’’ and the ‘‘J’’ key for
‘‘More of the blob is blue.’’ In other words, participants
had to verify whether the cumulative area (i.e., total
area of pixels) was higher for the blue or yellow side,
independent of number. In the Number Task, they were
asked: ‘‘Are more of the blobs blue or yellow,’’ and to
press the ‘‘F’’ key for ‘‘More of the blobs are yellow,’’
and the ‘‘J’’ key for ‘‘More of the blobs are blue.’’ In
other words, participants had to verify whether the
total number of items on the screen was higher for the
blue or yellow side, independent of cumulative area.
The experimenter stayed with the participant for four
practice trials in order to make sure that the participant
understood which dimension to attend to on each Task.

Each trial was presented for 2000 milliseconds (ms),
and participants were able to respond at any time
during that period. The stimulus stayed up after the
response, allowing eye tracking to continue for the full
2000 ms period. However, all of our reported results
are truncated to the participant’s response time on the
particular trial. Each ratio was presented in 32 distinct
trials, yielding 160 total trials per Task.

Eye-tracking analysis

All eye-tracking variables were extracted from the
data by examining fixation points along the horizontal
and vertical axes; fixation points were determined with
thresholds on both velocity and position. As shown in
Figure 1, we created three main areas of interest (AOIs)
depending on the task and correct answer: the correct
side, the incorrect side, and the fixation (which took up
the central 20% of the screen). Any samples that were
unreliable (e.g., because the participant blinked or
looked off-screen) were removed from the data analysis
(9% of total data).

The raw data files were analyzed with custom-made
MATLAB scripts. The primary variables of interest
included the onset of the first saccade; the proportion
of time spent looking at each AOI (e.g., correct vs.
incorrect); the location and the duration of the first,
last, and longest fixation; and the number of switches
between the AOIs. Although pupil size was also
measured, it did not correlate with any measure.

Results

The results are presented in three sections. First, we
report the behavioral effects of Task on average
performance and RT (ignoring eye-tracking data).
Second, because no previous study has measured eye
movements during number or cumulative area dis-
crimination, we report a number of signatures that
were identical for the two Tasks, including effects of
ratio. Finally, we combine the eye-tracking data with
Task to identify any saccadic signatures that might
differentiate number from area encoding.

For the eye-tracking analysis, we focused on two
broad categories of saccadic signatures: those identi-
fying where participants looked, and those identifying
how participants looked. For examining saccade
locations, we focused on the percentage of time spent at
each AOI (Correct, Incorrect, and Fixation) and the
AOI associated with the longest gaze. If number is
encoded straightforwardly through cumulative area, we
would expect that participants spend most of their
fixations looking at the AOI with more cumulative
area, even when discriminating number (e.g., because
the side with greater area would be experienced as
greater in number). For examining the nature of
saccades, we examined the total number of fixations,
the percent of fixations spent switching between any
two AOIs, saccadic onsets (time until the first saccade is
made), and the duration of the longest gaze. As we
detail below, area encoding predicts few fixations and
switches, but long onsets and gaze durations. In
contrast, a dedicated number encoding algorithm—that
is independent from area—predicts many fixations and
switches, but comparatively short onsets and gaze
durations. Note that all signatures confounded with
response times were normalized as percentage of total
fixations, avoiding this issue (though all our results
remain identical whether RT is controlled for or not).

Accuracy and RT analyses (behavior)

Performance on the Number and Area tasks across
ratio is shown in Figure 2. A 2 (Order: Number-First,
Area-First) 3 2 (Task: Number, Area) 3 5 (Ratio: 2.0,
1.5, 1.2, 1.14, and 1.12) mixed-measures ANOVA over
percent correct showed no main effects or interactions

Figure 2. Average performance on the Number (green) and Area

(blue) Tasks. Lines represent the standard psychophysical model

with each dimension’s Weber fraction as the only free

parameter. Error bars are SEM.
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with Order (all ps . 0.15); we removed Order from
future analyses. As expected from our pilot testing,
there was no main effect of Task, F(1, 11) ¼ 2.08, p ¼
0.18, with equivalent performance on the Area (Mean¼
0.80; SE¼0.03) and Number Tasks (Mean¼0.83; SE¼
0.02). As expected via Weber’s law, there was a
significant effect of Ratio, F(4, 44) ¼ 55.49, p , 0.01,
allowing us to estimate each participant’s Weber
fraction (Halberda & Feigenson, 2008; Halberda &
Odic, 2014; Piazza et al., 2004). The average Weber
fraction for the Area Task was 0.14 (SE¼0.02), and for
the Number Task was 0.13 (SE ¼ 0.01).

We found no difference between the Number and
Area Tasks’ response times. A 2 (Task: Number, Area)
35 (Ratio: 2.0, 1.5, 1.2, 1.14) mixed-measures ANOVA
over RTs showed an expected main effect of Ratio, F(4,
48)¼ 47.69, p , 0.001, with RTs decreasing as a
function of Ratio. There was no main effect of Task,
F(1, 12) , 1, nor a Task3Ratio interaction, F(4, 48)¼
2.13, p . 0.10.

We found that the Number task was unaffected by
cumulative area (Congruent vs. Incongruent), while
performance in the Area task was superior on
Incongruent trials (i.e., where number and area
conflicted across the array). A 2 (Task: Number, Area)
3 2 (Congruency: Congruent, Incongruent) mixed-
measures ANOVA showed a significant Congruency 3
Task interaction, F(1, 12) ¼ 8.56, p , 0.02: The
Number Task was not impacted by Congruency
(Congruent: 88.5%, SE¼1.2; Incongruent: 88.4%, SE¼
1.72) but the Area Task Congruent performance was
worse than the Area Task Incongruent performance
(Congruent: 81.9%, SE¼1.7; Incongruent: 91.0%, SE¼
2.01). The lack of a congruency effect in the Number
Task - i.e., identical performance when changing
cumulative area—is consistent with a dedicated en-
coding mechanism and the results of Barth (2008), Odic

and colleagues (2013), and others, but inconsistent with
the results of Gebuis and Reynvoet (2012), Hurewitz
and colleagues (2006), or Szucs and colleagues (2013).
The inverse effect of Congruency on the Area Task
(i.e., better Incongruent performance) is unexpected by
any theory and may stem from Incongruent trials
having larger objects on the correct side, allowing for
more efficient low spatial-frequency extraction com-
pared to when objects were smaller. Alternatively,
participants may have used both cumulative area and
average object size as a cue on the Incongruent trials,
but could use only cumulative area on the Congruent
trials, where object size average was controlled.

Effects of ratio and accuracy on saccadic signatures of
both tasks (eye-tracking)

Because no previous experiment has reported eye-
tracking patterns during approximate number or
cumulative area discrimination, we report how a
number of factors, including difficulty and accuracy,
influence saccades on both tasks. Subsequently, we
focus on saccadic signatures that differentiate number
from area encoding.

Task difficulty—that is, ratio—affected both where
participants looked and how participants looked at the
displays: Easier ratios were associated with more looks
to the correct AOI and many fewer switches between
AOIs. As can be observed from Figures 3 and 4,
participants spent most of their time looking at the
correct AOI, but this effect decreased with harder
ratios, F(4, 48) ¼ 3.96, p , 0.01. Furthermore, the
probability of the very first fixation being to the correct
AOI also increased with Ratio, F(4, 48)¼ 6.87, p ,
0.01, as did the probability of the longest fixation being
on the correct AOI increased with Ratio, F(4, 48)¼
9.851, p , 0.001. Participants spent many more
fixations switching between AOIs with harder ratios
compared to easier ones, most likely in an effort to
identify the correct AOI (Figure 4, upper right panel;
F(4, 48)¼ 21.65, p , 0.01: At the hardest ratio (1.125),
participants spent approximately 33% (SE¼ 1.9%) of
their fixations switching between the AOIs, whereas at
the easiest ratio (2.00) they spent about 23% (SE ¼
2.1%) of their fixations switching between the AOIs.
Note also that the significant effect of RT over Ratio
could itself be the product of a higher number of
fixations and switches before participants decide their
answer; indeed, RT and the total number of fixations
significantly correlated; r(23) ¼ 0.60, p , 0.001.

If participants generally spend more time looking at
the correct AOI, do they also spend more time looking
at the incorrect AOI when they answer incorrectly?
Figure 5 shows the probability of fixation being to the
correct AOI as a function of time and whether the
participant’s answer was correct or incorrect. The

Figure 3. The probability of a fixation being on the correct AOI

as a function of Ratio, collapsed across both the Number and

Area Task. Thus, higher values on the y axis indicate more

fixations on the side with more number or cumulative area.

Note that the data plotted here are not cropped at moment of

response (as the RT differed for each participant), whereas the

analyses are.
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pattern is clear: When participants answer incorrectly,
they are also more likely to be looking at the incorrect
AOI. Similarly, the percentage of time participants
spend looking at each of the three AOIs is distinct for
correct versus incorrect trials (Figure 5): On correct
trials, participants spend 37.6% (SE¼ 0.03) of time in
the correct AOI, 18.8% (SE ¼ 0.03) of time in the
incorrect AOI, and 43% (SE¼ 0.03) in the fixation
AOI; on incorrect trials, they spend 26.9% (SE¼ 0.02)
in the correct AOI, 36.1% (SE¼ 0.02) in the incorrect
AOI, and 36.9% (SE ¼ 0.02) in the fixation AOI. The
difference between percentage of time spent in the
correct AOI as a function of being correct or incorrect

was significant, t(12)¼�3.24, p , 0.01. Additionally,
all of the saccadic signatures discussed above are
affected by incorrect responses: The probability of the
first fixation being to the correct side was significantly
lower on incorrect trials, 46.5% versus 58.7%, t(12) ¼
�2.25, p , 0.05; the probability of the longest fixation
being on the correct side was significantly lower for
incorrect trials, 34.8% versus 62.9%, t(12)¼�4.26; p ,
0.001, and the proportion of switches between AOIs
was significantly higher for incorrect trials, 33.9%
versus 27.3%, t(12) ¼�3.40, p , 0.001.

Overall, the results here suggest that how partici-
pants ultimately answer is strongly related to where

Figure 4. The effects of Ratio, collapsed across Number and Area Tasks, on four saccadic signatures: (Upper Left) the average

percentage of fixations to the correct side, (Upper Right) the number of switches between the two target sides, (Lower Left) the

probability of the very first fixation being to the correct side, and (Lower Right) the probability of the longest fixation being on the

correct side. All error bars are SEM.

Figure 5. The probability of fixation being to the correct side, collapsed across Number and Area Tasks (left), and a bar graph

illustrating the percent of fixations to the correct versus incorrect side as a function of whether the participant answered correctly or

incorrectly, collapsed across the Number and Area Tasks. Bars are SEM. Stars indicate p , 0.05. As can be seen in the graph, incorrect

answers are associated with more looks to the wrong side.
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they look: The more time they spend looking at a
particular AOI, the more likely they are to select it as
the answer to the ‘‘more’’ question. Furthermore, on
harder trials (i.e., lower ratios) participants switch
significantly more between the AOIs, presumably
reflecting uncertainty and an attempt to identify the
correct side. On incorrect trials, participants’ saccadic
signatures are strikingly similar to those on correct
trials, but in the opposite direction. This suggests that
participants are likely not blindly guessing when ratios
are hard, but that they settle on the incorrect side and
judge it to be higher in the relevant quantity.2

Effect of task on eye-tracking signatures (eye-tracking)

Finally, we turn to the most important set of results:
Are there any saccadic signatures that can differentiate
number from area encoding?

Figure 6 illustrates an example for four trials—one
congruent and one incongruent, one from the Number
Task and one from the Area Task—of the typical
patterns of saccades and gazes seen for each Task. Each
dot represents a saccadic position (collapsed across all
twelve participants), while the size of the dot indicates
fixation duration at that location. As elaborated in
detail below, these images illustrate the typical pattern
observed across all trials: The encoding of number and
area can be distinguished both by where participants

look (e.g., the primary AOI attended during Incon-
gruent trials is different for the two tasks) and how
participants look (i.e., the number task shows signifi-
cantly more quick saccades (smaller disks in Figure 6),
including to the edge of the cloud of objects).

If participants are inferring number from cumulative
area, we would expect that participants spend most of
their time looking to the side with more cumulative
area, even when they are judging number (as this side
should appear to have more objects, as well). But—
contrary to these predictions and consistent with
dedicated encoding models—number encoding resulted
in a greater probability of looks to the side that was
greater in number, whereas area processing resulted in
a greater probability of looks to the side that was
greater in cumulative area (Figure 7). Hence, one
saccadic signature that clearly differentiates number
from area discrimination is location: Participants spend
most of their time looking at the side with more
number in the Number Task, and more area in the
Area Task. As discussed above, this result makes it
unlikely that participants are encoding or inferring
number through cumulative area, as this might predict
that they should be spending most of their time looking
to the side with the stronger area signal.

We also found that number encoding changed how
participants looked at the displays. Consistent with the
dedicated encoding account, the Number Task was
associated with many more saccades and shorter gazes,

Figure 6. Four cumulative fixation plots, collapsed across all participants, displaying each look made during the task (i.e., during either

the Area or Number question block) for two example arrays. Each image is scaled down from the actual display while preserving the

aspect ratio, with the fixation point being in the middle of each display. Each dot indicates a fixation, with the size of the dot

indicating the duration of gaze. On congruent trials, the side with more objects also has more cumulative area. On incongruent trials,

the side with fewer objects has more cumulative area. As can be seen from these example images, Task had a significant effect on

saccadic signatures: Participants differ in where they look and how they look, with number showing many more short saccades

compared to area.
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while the Area Task was associated with many fewer
saccades—including much more time spent at fixa-
tion—and much longer gazes. This difference in
saccadic signatures between the Number and Area
Tasks is empirically demonstrated through three
signatures: central fixation time, gaze duration, and
number of switches (Figure 8).

First, we found that the participants spent much
more time at the fixation AOI in the Area Task,
consistent with the prediction that area encoding
depends on distributed attention: As shown in Figure 8,
the percentage of time participants spend in the fixation
AOI is significantly higher for the Area Task (46%, SE
¼ 0.05), than for the Number Task (39%, SE¼ 0.05) as
measured by paired-samples t test, t(12)¼ 2.82, p ,

0.02; consistent with number encoding yielding more
saccades around the screen. This effect holds for both
Congruent and Incongruent trials: A 2 (Task: Number,
Area) 3 2 (Congruency: Congruent, Incongruent)
repeated-measures ANOVA over percent of time spent
in the fixation AOI showed a main effect of Task, F(1,
12)¼ 7.77, p , 0.05, but no interaction, F(1, 12)¼ 3.10,
p¼ 0.10. Relatedly, there was a marginally significant
effect of the onset to first saccade, which was delayed in
the Area Task, 380 ms, SE ¼ 38.0, compared to the
Number Task, 345.20 ms, SE¼ 31.5, F(1, 12)¼ 4.20, p
¼ 0.063.

Second, participants showed much longer gazes in
the Area Task compared to the Number Task,
consistent with the dedicated encoding theory: As

Figure 7. Probability of looking to the side with more number or more area as a function of Task and Congruency, ignoring the center

screen region (chance¼ 50%). In the Congruent trials, participants’ looking in Area and Number tasks is highly similar, with both tasks

resulting in looks that gravitate towards the side greater in number/area. In the Incongruent condition, the opposite result is seen

whereby looking on the Area and Number tasks strongly diverges with participants looking to the side that is correct under their

currently relevant dimension. Note, if number were represented via area, this is an unexpected result. However, if number has its

own representation and extraction algorithm that is independent of area, then this is a predicted result.

Figure 8. The effects of Task on three saccadic signatures: (Upper Left) average percent of time spent in fixation, (Upper Right) the

duration of the longest fixation truncated to RT, (Lower Left) the number of switches between the two target sides. All error bars are

SEM. Stars indicate p , 0.05. The Area Task is associated with longer fixations and fewer switches.
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shown in Figure 8, the duration of the longest fixation
(after the first saccade) was significantly longer in the
Area Task (444.84 ms, SE¼ 32.35, than in the Number
Task, 403.46 ms, SE¼ 25.20, t(12) ¼ 2.22, p , 0.05.
Once again, this effect did not show an interaction with
Congruency: We observed a main effect of Task, F(1,
12)¼ 5.01, p , 0.05, but no main effect of Congruency
nor an interaction (both Fs , 1.0).

Finally, participants showed many more switches
between the AOIs in the Number Task compared to the
Area Task: As shown in Figure 8, the number of
switches between the two sides was significantly higher
in the Number Task, 1.56; SE¼ 0.21, compared to the
Area Task, 1.22; SE¼ 0.17 t(12)¼ 2.31, p , 0.05. This
effect, however, was primarily driven by the difference
on Incongruent trials: There was no main effect of
Task, F(1, 12)¼ 2.79, p ¼ 0.12, but there was a
significant interaction with Congruency, F(1, 12)¼
20.88; p , 0.01. The absence of this effect on
Congruent trials is likely driven by the Area Task
Congruent trials being significantly harder (recall that
harder trials generally show more switches). Hence, the
effect of switches on Incongruent trials (which did not
significantly differ in accuracy or RT for the Number
vs. Area Tasks) is further validation of the differences
in switches between number and area encoding.

Our results can be synthesized into two major
findings. First, participants in the Number Task–unlike
the Area Task—spend most of their time looking to the
side with more objects. Second, participants in the
Number Task show—compared to the Area Task—
many more saccades and switches, including fewer
looks to the fixation AOI, consistent with number
encoding depending on focal attention and area
encoding depending on distributed attention. These
results dissociate the encoding of number and area and
are most consistent with the dedicated encoding
models.

A possible criticism of our interpretation of these
results could be that number encoding occurs through
a combination of cumulative area and other visual
features, such as brightness or low spatial-frequency
(Gebuis & Reynvoet, 2012). For example, perhaps
participants quickly encode cumulative area, and then
subsequently encode other dimensions, thus increasing
switches and/or other saccadic signatures away from
pure cumulative area encoding. This interpretation is
inconsistent, however, with two aspects of our results.
First, participants performing incongruent Number
Task trials spent almost all of their time (including
their first saccade) on the side with more objects,
contrary to the critical signatures of area encoding in
our stimuli (see Figure 7). Second, if area information
is combined with other features during number
encoding, the Number Task saccadic signatures
should be additive with those of the Area Task (i.e.,

number encoding will include all signatures of area
encoding, plus additional ones). But, this is the exact
opposite of what we find: Several saccadic signatures,
including percent of fixations in the central AOI and
the duration of longest fixation, are lower in the
Number Task than in the Area Task, making
additivity impossible. And, given that the two tasks
had identical accuracy and RT, the saccadic signatures
observed for area do not appear to include idling time
that would allow for additivity. Finally, given that the
stimuli were identical, if number is encoded via surface
area, then surface area performance would place an
upper bound on number performance with decrements
occurring with each additional factor required for a
number judgment. In conflict with this prediction,
number performance was just as good as area
performance in our task, and with a distinct set of eye-
movement signatures supporting successful number
discrimination.

Together, these results suggest that number and area
encoding not only promote differences in where
participants look (i.e., to the side with more number vs.
to the side with more cumulative area), but also in how
they look (i.e., with number showing many more
saccades, and much quicker looks). As discussed below,
these results are most consistent with the dedicated
encoding theory for number cognition.

Discussion

Theories of visual number encoding fall into one of
two categories: Dedicated encoding theories claim that
the visual system can directly extract number from the
retinal input (e.g., via positions of objects on a
topographic map), whereas nonnumerical theories
claim that the visual system infers number from a range
of nonnumeric and nonobject visual features (e.g.,
surface area). In this experiment, we tracked eye
movements of participants who performed both a
number and a cumulative surface area discrimination
task over identical stimuli, and sought to identify
whether the visual information explored in the displays
was identical for number and area (as predicted by
some nonnumerical theories) or if it was different (as
predicted by dedicated encoding theories). Our results
were more consistent with the dedicated encoding
theories.

We found that, even with identical displays, asking
participants to discriminate via number produced
significant differences in saccadic signatures compared
to when they were asked to discriminate via cumulative
surface area. First, whether participants discriminated
number or cumulative area modulated where partici-
pants looked: During the number task, participants
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looked significantly longer and more often to the side
that had more objects, while during the area task they
looked significantly longer and more often to the side
that had more cumulative surface area. Thus, partic-
ipants did not appear to encode number by looking to
the side with the stronger cumulative area signal. Task
also modulated how participants looked at the displays:
The number task was associated with significantly more
and quicker looks, and more switches between the
targets; the area task was associated with significantly
fewer, long saccades, and fewer switches between
targets (see Figures 6 and 8). These results cannot be
explained by differences in congruency, accuracy, or
RT, and are best explained by a difference in the
underlying encoding procedures: Number encoding
depends on more saccades in an effort to gather object-
related information and attend/discriminate among
crowded items, whereas area encoding depends more
on global processing of nonnumeric features and
distributed attention.

Placing our data in a broader context, we emphasize
that our results do not suggest an exact algorithm used
by the visual system to extract number. Because the
world is dynamic, there is rarely a single extraction
algorithm that will fulfill the needs of cognition across
all contexts. It is true that, in many real-world cases,
area is a good proxy for number. And, if the extraction
of area information required fewer resources than the
extraction of number, then it would be a rational choice
to use it. But area and number can be made to conflict
with each other—as was done in the Incongruent trials
of the present experiment. In such cases, vision must
either stick with a failing algorithm (e.g., cumulative
area), or dynamically adjust to gain better purchase on
the dimension of interest (e.g., what is the number of
blue dots?). Our results are consistent with either the
possibility that humans are able to make rapid
adjustments in the algorithms they use to estimate
number, or with the possibility that a single number-
specific visual algorithm normalizes appropriately
across the variety of contexts to arrive at an estimate of
visual number that is robust to changes in cumulative
area. Furthermore, our study only investigated the
encoding algorithms of visual number; as number
representations are well known to be amodal (Izard et
al., 2009; Jordan & Brannon, 2006; Meck & Church,
1983), an entirely different set of algorithms will likely
be required to describe the auditory encoding of
number.

Beyond our findings on signatures that differentiate
number from cumulative area encoding, we also found
saccadic signatures that were shared between them
and depended on ratio and whether participants
answered correctly or incorrectly. First, the propor-
tion of time spent looking to the correct side decreased
with harder ratios, while the number of switches

between AOIs increased. Second, when participants
answered incorrectly on the trial, the saccadic
signatures were inverted compared to when they
answered correctly: They looked longer to the
incorrect side, and spent even more time switching
between AOIs. Together, these results indicate that an
observer’s ultimate response aligns with where they
look the most. Additionally, the inverse signatures
during incorrect trials suggest that these are unlikely
to be pure guesses, and instead may be trials on which
the incorrect side truly looked more numerous or
larger in area.

The results reported here are broadly consistent with
more recent work suggesting independence between
estimating number and surface area. Work from our
lab has shown that the Weber fraction (i.e., precision)
of number and cumulative area representations are
independent within individual observers, even across
development (Odic, Libertus, et al., 2013). Much like in
the results reported here, there was also no effect of
area-congruent versus area-incongruent trials on num-
ber discrimination at any age. Lourenco, Bonny,
Fernandez, and Rao (2012) found that individual
differences in number Weber fractions uniquely corre-
lated with arithmetic math problems, whereas individ-
ual differences in approximate cumulative surface area
uniquely correlated with geometric math problems.
Finally, work from Castelli, Glaser, and Butterworth
(2006) has shown that unique substrates of the intra-
parietal sulcus code for number versus surface area.
Together, these results suggest that number processing
is importantly independent from cumulative area
processing, and that cumulative area is not contributing
to the encoding of number.

If number and area encoding rely on different
computations, why do some studies find differences in
visual number discrimination on congruent versus
incongruent trials? Given that this difference is not
always reliable (e.g., we failed to observe it here), the
reported differences may be explained in at least two
ways. First, some manipulations of surface area or
density may actually impair number encoding, even if
the encoding procedures are different (e.g., small
objects in the periphery may be missed or difficult to
represent on object maps; Ross & Burr, 2010).
Tracking saccadic signatures may allow us to test this
hypothesis in the near future: Given that more difficult
number trials are associated with more saccades and
switches, one expectation would be that manipulations
of area that strongly impact number encoding should
also increase the number of saccades and switches,
even when the number ratio is kept constant. This
would be the opposite of the pattern predicted if
participants are instead using surface area as a cue to
number (in which case, the number of saccades and
switches should decrease as cumulative area becomes
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easier to encode). As we did not find a difference
between congruent and incongruent number trials in
this experiment, this remains an avenue for future
research.

The second possibility for the occasional congruency
differences may be that nonnumeric dimensions are
sometimes useful cues to number: As discussed above,
because number and total surface area are highly
correlated in the world, it would be rational for the
observer to use surface area if computing it is easier and
quicker than computing number (e.g., if the ratio for
cumulative area is easier than the one for number). For
example, we would expect that individuals with poorer
ANS precision might compensate in daily life by relying
on surface area. Hence, the congruency difference may
not be indicative of an area-based number encoding,
but rather a rational substitution choice of one
dimension over another in order to perform better on
most tasks. In this case, number discrimination
saccadic signatures, such as the high number of
switches, should decrease as area becomes more salient
and easier to use.

An important caveat of the current work is that we
focused entirely on how saccadic signatures differenti-
ate number from surface area. Although these dimen-
sions were motivated by the majority of nonnumeric
feature theories and models focusing on surface area
(either as a cue to number directly, or as a normalizing
procedure for density; Dakin et al., 2011; Gebuis &
Reynvoet, 2012), it remains an open possibility that
number is encoded through visual features that do not
involve surface area (e.g., contrast, diameter, etc.).
Future work utilizing eye tracking during discrimina-
tion performance could be used to test these visual
features. Any such work must explain why number
encoding demonstrates an increased number of sac-
cades and switches between targets, as an object-based
encoding account provides a straightforward explana-
tion to this pattern.

In summary, our work is the first to report eye-
tracking data applied to a highly controversial and
popular question: How does the visual system encode
number? Although the evidence presented here suggests
that the algorithms that encode for number are distinct
from those that encode for cumulative area, this work
cannot—at the moment—specify the exact nature of
visual number encoding. But, by adding eye-tracking
data into a literature that already combines neurosci-
ence, psychophysics, and cognitive, computational,
comparative, and developmental psychology, we hope
to provide another way that researchers can come
together and understand the nature of number in vision
and cognition.

Keywords: approximate number system, area percep-
tion, eye-tracking
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Footnotes

1 The use of nonobject features, such as texture and low
spatial-frequency, is consistent with findings that
estimates of total or average object size are superior to
estimates of a single object’s size (Ariely, 2001; Chong
& Treisman, 2003). The use of distributed attention
during area encoding is consistent with decreases in
area performance when participants are forced to
engage in focal attention (Chong & Treisman, 2005;
Joo, Shin, Chong, & Blake, 2009).
2 An additional analysis examined whether any features
of the display led the majority of participants to
respond incorrectly on specific trials. However, we
found little consistency in participant’s responses on
specific trials: We identified only two trials that showed
below-chance performance when averaged across all
participants.
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